Solve for x
x=\frac{\sqrt{94}-7}{18}\approx 0.149742206
x=\frac{-\sqrt{94}-7}{18}\approx -0.927519984
Graph
Share
Copied to clipboard
-28x+5-36x^{2}=0
Subtract 36x^{2} from both sides.
-36x^{2}-28x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\left(-36\right)\times 5}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, -28 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\left(-36\right)\times 5}}{2\left(-36\right)}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784+144\times 5}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-\left(-28\right)±\sqrt{784+720}}{2\left(-36\right)}
Multiply 144 times 5.
x=\frac{-\left(-28\right)±\sqrt{1504}}{2\left(-36\right)}
Add 784 to 720.
x=\frac{-\left(-28\right)±4\sqrt{94}}{2\left(-36\right)}
Take the square root of 1504.
x=\frac{28±4\sqrt{94}}{2\left(-36\right)}
The opposite of -28 is 28.
x=\frac{28±4\sqrt{94}}{-72}
Multiply 2 times -36.
x=\frac{4\sqrt{94}+28}{-72}
Now solve the equation x=\frac{28±4\sqrt{94}}{-72} when ± is plus. Add 28 to 4\sqrt{94}.
x=\frac{-\sqrt{94}-7}{18}
Divide 28+4\sqrt{94} by -72.
x=\frac{28-4\sqrt{94}}{-72}
Now solve the equation x=\frac{28±4\sqrt{94}}{-72} when ± is minus. Subtract 4\sqrt{94} from 28.
x=\frac{\sqrt{94}-7}{18}
Divide 28-4\sqrt{94} by -72.
x=\frac{-\sqrt{94}-7}{18} x=\frac{\sqrt{94}-7}{18}
The equation is now solved.
-28x+5-36x^{2}=0
Subtract 36x^{2} from both sides.
-28x-36x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-36x^{2}-28x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-36x^{2}-28x}{-36}=-\frac{5}{-36}
Divide both sides by -36.
x^{2}+\left(-\frac{28}{-36}\right)x=-\frac{5}{-36}
Dividing by -36 undoes the multiplication by -36.
x^{2}+\frac{7}{9}x=-\frac{5}{-36}
Reduce the fraction \frac{-28}{-36} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{9}x=\frac{5}{36}
Divide -5 by -36.
x^{2}+\frac{7}{9}x+\left(\frac{7}{18}\right)^{2}=\frac{5}{36}+\left(\frac{7}{18}\right)^{2}
Divide \frac{7}{9}, the coefficient of the x term, by 2 to get \frac{7}{18}. Then add the square of \frac{7}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{9}x+\frac{49}{324}=\frac{5}{36}+\frac{49}{324}
Square \frac{7}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{9}x+\frac{49}{324}=\frac{47}{162}
Add \frac{5}{36} to \frac{49}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{18}\right)^{2}=\frac{47}{162}
Factor x^{2}+\frac{7}{9}x+\frac{49}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{18}\right)^{2}}=\sqrt{\frac{47}{162}}
Take the square root of both sides of the equation.
x+\frac{7}{18}=\frac{\sqrt{94}}{18} x+\frac{7}{18}=-\frac{\sqrt{94}}{18}
Simplify.
x=\frac{\sqrt{94}-7}{18} x=\frac{-\sqrt{94}-7}{18}
Subtract \frac{7}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}