Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=\frac{3}{10}=0.3
Graph
Share
Copied to clipboard
a+b=-64 ab=-20\times 21=-420
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -20x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
1,-420 2,-210 3,-140 4,-105 5,-84 6,-70 7,-60 10,-42 12,-35 14,-30 15,-28 20,-21
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -420.
1-420=-419 2-210=-208 3-140=-137 4-105=-101 5-84=-79 6-70=-64 7-60=-53 10-42=-32 12-35=-23 14-30=-16 15-28=-13 20-21=-1
Calculate the sum for each pair.
a=6 b=-70
The solution is the pair that gives sum -64.
\left(-20x^{2}+6x\right)+\left(-70x+21\right)
Rewrite -20x^{2}-64x+21 as \left(-20x^{2}+6x\right)+\left(-70x+21\right).
2x\left(-10x+3\right)+7\left(-10x+3\right)
Factor out 2x in the first and 7 in the second group.
\left(-10x+3\right)\left(2x+7\right)
Factor out common term -10x+3 by using distributive property.
x=\frac{3}{10} x=-\frac{7}{2}
To find equation solutions, solve -10x+3=0 and 2x+7=0.
-20x^{2}-64x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-20\right)\times 21}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, -64 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\left(-20\right)\times 21}}{2\left(-20\right)}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096+80\times 21}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-\left(-64\right)±\sqrt{4096+1680}}{2\left(-20\right)}
Multiply 80 times 21.
x=\frac{-\left(-64\right)±\sqrt{5776}}{2\left(-20\right)}
Add 4096 to 1680.
x=\frac{-\left(-64\right)±76}{2\left(-20\right)}
Take the square root of 5776.
x=\frac{64±76}{2\left(-20\right)}
The opposite of -64 is 64.
x=\frac{64±76}{-40}
Multiply 2 times -20.
x=\frac{140}{-40}
Now solve the equation x=\frac{64±76}{-40} when ± is plus. Add 64 to 76.
x=-\frac{7}{2}
Reduce the fraction \frac{140}{-40} to lowest terms by extracting and canceling out 20.
x=-\frac{12}{-40}
Now solve the equation x=\frac{64±76}{-40} when ± is minus. Subtract 76 from 64.
x=\frac{3}{10}
Reduce the fraction \frac{-12}{-40} to lowest terms by extracting and canceling out 4.
x=-\frac{7}{2} x=\frac{3}{10}
The equation is now solved.
-20x^{2}-64x+21=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-20x^{2}-64x+21-21=-21
Subtract 21 from both sides of the equation.
-20x^{2}-64x=-21
Subtracting 21 from itself leaves 0.
\frac{-20x^{2}-64x}{-20}=-\frac{21}{-20}
Divide both sides by -20.
x^{2}+\left(-\frac{64}{-20}\right)x=-\frac{21}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}+\frac{16}{5}x=-\frac{21}{-20}
Reduce the fraction \frac{-64}{-20} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{16}{5}x=\frac{21}{20}
Divide -21 by -20.
x^{2}+\frac{16}{5}x+\left(\frac{8}{5}\right)^{2}=\frac{21}{20}+\left(\frac{8}{5}\right)^{2}
Divide \frac{16}{5}, the coefficient of the x term, by 2 to get \frac{8}{5}. Then add the square of \frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{21}{20}+\frac{64}{25}
Square \frac{8}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{361}{100}
Add \frac{21}{20} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{5}\right)^{2}=\frac{361}{100}
Factor x^{2}+\frac{16}{5}x+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{5}\right)^{2}}=\sqrt{\frac{361}{100}}
Take the square root of both sides of the equation.
x+\frac{8}{5}=\frac{19}{10} x+\frac{8}{5}=-\frac{19}{10}
Simplify.
x=\frac{3}{10} x=-\frac{7}{2}
Subtract \frac{8}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}