Solve for x
x=10
x=16
Graph
Share
Copied to clipboard
-20x^{2}+520x-3200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-520±\sqrt{520^{2}-4\left(-20\right)\left(-3200\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 520 for b, and -3200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-520±\sqrt{270400-4\left(-20\right)\left(-3200\right)}}{2\left(-20\right)}
Square 520.
x=\frac{-520±\sqrt{270400+80\left(-3200\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-520±\sqrt{270400-256000}}{2\left(-20\right)}
Multiply 80 times -3200.
x=\frac{-520±\sqrt{14400}}{2\left(-20\right)}
Add 270400 to -256000.
x=\frac{-520±120}{2\left(-20\right)}
Take the square root of 14400.
x=\frac{-520±120}{-40}
Multiply 2 times -20.
x=-\frac{400}{-40}
Now solve the equation x=\frac{-520±120}{-40} when ± is plus. Add -520 to 120.
x=10
Divide -400 by -40.
x=-\frac{640}{-40}
Now solve the equation x=\frac{-520±120}{-40} when ± is minus. Subtract 120 from -520.
x=16
Divide -640 by -40.
x=10 x=16
The equation is now solved.
-20x^{2}+520x-3200=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-20x^{2}+520x-3200-\left(-3200\right)=-\left(-3200\right)
Add 3200 to both sides of the equation.
-20x^{2}+520x=-\left(-3200\right)
Subtracting -3200 from itself leaves 0.
-20x^{2}+520x=3200
Subtract -3200 from 0.
\frac{-20x^{2}+520x}{-20}=\frac{3200}{-20}
Divide both sides by -20.
x^{2}+\frac{520}{-20}x=\frac{3200}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-26x=\frac{3200}{-20}
Divide 520 by -20.
x^{2}-26x=-160
Divide 3200 by -20.
x^{2}-26x+\left(-13\right)^{2}=-160+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-26x+169=-160+169
Square -13.
x^{2}-26x+169=9
Add -160 to 169.
\left(x-13\right)^{2}=9
Factor x^{2}-26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-13\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-13=3 x-13=-3
Simplify.
x=16 x=10
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}