Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x^{2}-x-1\right)
Factor out 2. Polynomial -x^{2}-x-1 is not factored since it does not have any rational roots.
-2x^{2}-2x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-2\right)±\sqrt{-12}}{2\left(-2\right)}
Add 4 to -16.
-2x^{2}-2x-2
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.