Solve for x (complex solution)
x=\frac{-\sqrt{23}i+1}{4}\approx 0.25-1.198957881i
x=\frac{1+\sqrt{23}i}{4}\approx 0.25+1.198957881i
Graph
Share
Copied to clipboard
-2x^{2}+x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{1-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-1±\sqrt{-23}}{2\left(-2\right)}
Add 1 to -24.
x=\frac{-1±\sqrt{23}i}{2\left(-2\right)}
Take the square root of -23.
x=\frac{-1±\sqrt{23}i}{-4}
Multiply 2 times -2.
x=\frac{-1+\sqrt{23}i}{-4}
Now solve the equation x=\frac{-1±\sqrt{23}i}{-4} when ± is plus. Add -1 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+1}{4}
Divide -1+i\sqrt{23} by -4.
x=\frac{-\sqrt{23}i-1}{-4}
Now solve the equation x=\frac{-1±\sqrt{23}i}{-4} when ± is minus. Subtract i\sqrt{23} from -1.
x=\frac{1+\sqrt{23}i}{4}
Divide -1-i\sqrt{23} by -4.
x=\frac{-\sqrt{23}i+1}{4} x=\frac{1+\sqrt{23}i}{4}
The equation is now solved.
-2x^{2}+x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-2x^{2}+x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-2x^{2}+x=3
Subtract -3 from 0.
\frac{-2x^{2}+x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=\frac{3}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=-\frac{3}{2}
Divide 3 by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{23}{16}
Add -\frac{3}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{23}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{23}i}{4} x-\frac{1}{4}=-\frac{\sqrt{23}i}{4}
Simplify.
x=\frac{1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i+1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}