Solve for y
y=-\frac{\left(2\sqrt{2}+1\right)\left(\sqrt{2}x^{2}-5x+1\right)}{7}
Solve for x (complex solution)
x=\frac{-\sqrt{8\sqrt{2}y-32y+50-8\sqrt{2}}+5\sqrt{2}}{4}
x=\frac{\sqrt{8\sqrt{2}y-32y+50-8\sqrt{2}}+5\sqrt{2}}{4}
Solve for x
x=\frac{-\sqrt{8\sqrt{2}y-32y+50-8\sqrt{2}}+5\sqrt{2}}{4}
x=\frac{\sqrt{8\sqrt{2}y-32y+50-8\sqrt{2}}+5\sqrt{2}}{4}\text{, }y\leq \frac{9\sqrt{2}}{56}+\frac{23}{14}
Graph
Share
Copied to clipboard
-2x^{2}+5\sqrt{2}x=4y-\sqrt{2}y+\sqrt{2}
Use the distributive property to multiply 4-\sqrt{2} by y.
4y-\sqrt{2}y+\sqrt{2}=-2x^{2}+5\sqrt{2}x
Swap sides so that all variable terms are on the left hand side.
4y-\sqrt{2}y=-2x^{2}+5\sqrt{2}x-\sqrt{2}
Subtract \sqrt{2} from both sides.
\left(4-\sqrt{2}\right)y=-2x^{2}+5\sqrt{2}x-\sqrt{2}
Combine all terms containing y.
\frac{\left(4-\sqrt{2}\right)y}{4-\sqrt{2}}=\frac{-2x^{2}+5\sqrt{2}x-\sqrt{2}}{4-\sqrt{2}}
Divide both sides by 4-\sqrt{2}.
y=\frac{-2x^{2}+5\sqrt{2}x-\sqrt{2}}{4-\sqrt{2}}
Dividing by 4-\sqrt{2} undoes the multiplication by 4-\sqrt{2}.
y=\frac{\left(\sqrt{2}+4\right)\left(-2x^{2}+5\sqrt{2}x-\sqrt{2}\right)}{14}
Divide -2x^{2}+5\sqrt{2}x-\sqrt{2} by 4-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}