Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+2x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 2}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 2}}{2\left(-2\right)}
Square 2.
x=\frac{-2±\sqrt{4+8\times 2}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2±\sqrt{4+16}}{2\left(-2\right)}
Multiply 8 times 2.
x=\frac{-2±\sqrt{20}}{2\left(-2\right)}
Add 4 to 16.
x=\frac{-2±2\sqrt{5}}{2\left(-2\right)}
Take the square root of 20.
x=\frac{-2±2\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{5}-2}{-4}
Now solve the equation x=\frac{-2±2\sqrt{5}}{-4} when ± is plus. Add -2 to 2\sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Divide -2+2\sqrt{5} by -4.
x=\frac{-2\sqrt{5}-2}{-4}
Now solve the equation x=\frac{-2±2\sqrt{5}}{-4} when ± is minus. Subtract 2\sqrt{5} from -2.
x=\frac{\sqrt{5}+1}{2}
Divide -2-2\sqrt{5} by -4.
-2x^{2}+2x+2=-2\left(x-\frac{1-\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}+1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{5}}{2} for x_{1} and \frac{1+\sqrt{5}}{2} for x_{2}.