Solve for x
x=25
x=43
Graph
Share
Copied to clipboard
-2x^{2}+136x-2150=0
Subtract 350 from -1800 to get -2150.
x=\frac{-136±\sqrt{136^{2}-4\left(-2\right)\left(-2150\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 136 for b, and -2150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-2\right)\left(-2150\right)}}{2\left(-2\right)}
Square 136.
x=\frac{-136±\sqrt{18496+8\left(-2150\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-136±\sqrt{18496-17200}}{2\left(-2\right)}
Multiply 8 times -2150.
x=\frac{-136±\sqrt{1296}}{2\left(-2\right)}
Add 18496 to -17200.
x=\frac{-136±36}{2\left(-2\right)}
Take the square root of 1296.
x=\frac{-136±36}{-4}
Multiply 2 times -2.
x=-\frac{100}{-4}
Now solve the equation x=\frac{-136±36}{-4} when ± is plus. Add -136 to 36.
x=25
Divide -100 by -4.
x=-\frac{172}{-4}
Now solve the equation x=\frac{-136±36}{-4} when ± is minus. Subtract 36 from -136.
x=43
Divide -172 by -4.
x=25 x=43
The equation is now solved.
-2x^{2}+136x-2150=0
Subtract 350 from -1800 to get -2150.
-2x^{2}+136x=2150
Add 2150 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}+136x}{-2}=\frac{2150}{-2}
Divide both sides by -2.
x^{2}+\frac{136}{-2}x=\frac{2150}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-68x=\frac{2150}{-2}
Divide 136 by -2.
x^{2}-68x=-1075
Divide 2150 by -2.
x^{2}-68x+\left(-34\right)^{2}=-1075+\left(-34\right)^{2}
Divide -68, the coefficient of the x term, by 2 to get -34. Then add the square of -34 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-68x+1156=-1075+1156
Square -34.
x^{2}-68x+1156=81
Add -1075 to 1156.
\left(x-34\right)^{2}=81
Factor x^{2}-68x+1156. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{81}
Take the square root of both sides of the equation.
x-34=9 x-34=-9
Simplify.
x=43 x=25
Add 34 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}