Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-2\sqrt{6x^{2}-34+48}\right)^{2}=\left(-13-5x\right)^{2}
Square both sides of the equation.
\left(-2\sqrt{6x^{2}+14}\right)^{2}=\left(-13-5x\right)^{2}
Add -34 and 48 to get 14.
\left(-2\right)^{2}\left(\sqrt{6x^{2}+14}\right)^{2}=\left(-13-5x\right)^{2}
Expand \left(-2\sqrt{6x^{2}+14}\right)^{2}.
4\left(\sqrt{6x^{2}+14}\right)^{2}=\left(-13-5x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(6x^{2}+14\right)=\left(-13-5x\right)^{2}
Calculate \sqrt{6x^{2}+14} to the power of 2 and get 6x^{2}+14.
24x^{2}+56=\left(-13-5x\right)^{2}
Use the distributive property to multiply 4 by 6x^{2}+14.
24x^{2}+56=169+130x+25x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-13-5x\right)^{2}.
24x^{2}+56-169=130x+25x^{2}
Subtract 169 from both sides.
24x^{2}-113=130x+25x^{2}
Subtract 169 from 56 to get -113.
24x^{2}-113-130x=25x^{2}
Subtract 130x from both sides.
24x^{2}-113-130x-25x^{2}=0
Subtract 25x^{2} from both sides.
-x^{2}-113-130x=0
Combine 24x^{2} and -25x^{2} to get -x^{2}.
-x^{2}-130x-113=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-130\right)±\sqrt{\left(-130\right)^{2}-4\left(-1\right)\left(-113\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -130 for b, and -113 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-130\right)±\sqrt{16900-4\left(-1\right)\left(-113\right)}}{2\left(-1\right)}
Square -130.
x=\frac{-\left(-130\right)±\sqrt{16900+4\left(-113\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-130\right)±\sqrt{16900-452}}{2\left(-1\right)}
Multiply 4 times -113.
x=\frac{-\left(-130\right)±\sqrt{16448}}{2\left(-1\right)}
Add 16900 to -452.
x=\frac{-\left(-130\right)±8\sqrt{257}}{2\left(-1\right)}
Take the square root of 16448.
x=\frac{130±8\sqrt{257}}{2\left(-1\right)}
The opposite of -130 is 130.
x=\frac{130±8\sqrt{257}}{-2}
Multiply 2 times -1.
x=\frac{8\sqrt{257}+130}{-2}
Now solve the equation x=\frac{130±8\sqrt{257}}{-2} when ± is plus. Add 130 to 8\sqrt{257}.
x=-4\sqrt{257}-65
Divide 130+8\sqrt{257} by -2.
x=\frac{130-8\sqrt{257}}{-2}
Now solve the equation x=\frac{130±8\sqrt{257}}{-2} when ± is minus. Subtract 8\sqrt{257} from 130.
x=4\sqrt{257}-65
Divide 130-8\sqrt{257} by -2.
x=-4\sqrt{257}-65 x=4\sqrt{257}-65
The equation is now solved.
-2\sqrt{6\left(-4\sqrt{257}-65\right)^{2}-34+48}=-13-5\left(-4\sqrt{257}-65\right)
Substitute -4\sqrt{257}-65 for x in the equation -2\sqrt{6x^{2}-34+48}=-13-5x.
-20\times 257^{\frac{1}{2}}-312=312+20\times 257^{\frac{1}{2}}
Simplify. The value x=-4\sqrt{257}-65 does not satisfy the equation because the left and the right hand side have opposite signs.
-2\sqrt{6\left(4\sqrt{257}-65\right)^{2}-34+48}=-13-5\left(4\sqrt{257}-65\right)
Substitute 4\sqrt{257}-65 for x in the equation -2\sqrt{6x^{2}-34+48}=-13-5x.
-20\times 257^{\frac{1}{2}}+312=312-20\times 257^{\frac{1}{2}}
Simplify. The value x=4\sqrt{257}-65 satisfies the equation.
x=4\sqrt{257}-65
Equation -2\sqrt{6x^{2}+14}=-5x-13 has a unique solution.