Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(-2x^{2}-3x\right)
Factor out 9.
x\left(-2x-3\right)
Consider -2x^{2}-3x. Factor out x.
9x\left(-2x-3\right)
Rewrite the complete factored expression.
-18x^{2}-27x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}}}{2\left(-18\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±27}{2\left(-18\right)}
Take the square root of \left(-27\right)^{2}.
x=\frac{27±27}{2\left(-18\right)}
The opposite of -27 is 27.
x=\frac{27±27}{-36}
Multiply 2 times -18.
x=\frac{54}{-36}
Now solve the equation x=\frac{27±27}{-36} when ± is plus. Add 27 to 27.
x=-\frac{3}{2}
Reduce the fraction \frac{54}{-36} to lowest terms by extracting and canceling out 18.
x=\frac{0}{-36}
Now solve the equation x=\frac{27±27}{-36} when ± is minus. Subtract 27 from 27.
x=0
Divide 0 by -36.
-18x^{2}-27x=-18\left(x-\left(-\frac{3}{2}\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{2} for x_{1} and 0 for x_{2}.
-18x^{2}-27x=-18\left(x+\frac{3}{2}\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-18x^{2}-27x=-18\times \frac{-2x-3}{-2}x
Add \frac{3}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-18x^{2}-27x=9\left(-2x-3\right)x
Cancel out 2, the greatest common factor in -18 and -2.