Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}+4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-16\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-16\right)}}{2\left(-16\right)}
Square 4.
x=\frac{-4±\sqrt{16+64}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-4±\sqrt{80}}{2\left(-16\right)}
Add 16 to 64.
x=\frac{-4±4\sqrt{5}}{2\left(-16\right)}
Take the square root of 80.
x=\frac{-4±4\sqrt{5}}{-32}
Multiply 2 times -16.
x=\frac{4\sqrt{5}-4}{-32}
Now solve the equation x=\frac{-4±4\sqrt{5}}{-32} when ± is plus. Add -4 to 4\sqrt{5}.
x=\frac{1-\sqrt{5}}{8}
Divide -4+4\sqrt{5} by -32.
x=\frac{-4\sqrt{5}-4}{-32}
Now solve the equation x=\frac{-4±4\sqrt{5}}{-32} when ± is minus. Subtract 4\sqrt{5} from -4.
x=\frac{\sqrt{5}+1}{8}
Divide -4-4\sqrt{5} by -32.
x=\frac{1-\sqrt{5}}{8} x=\frac{\sqrt{5}+1}{8}
The equation is now solved.
-16x^{2}+4x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-16x^{2}+4x+1-1=-1
Subtract 1 from both sides of the equation.
-16x^{2}+4x=-1
Subtracting 1 from itself leaves 0.
\frac{-16x^{2}+4x}{-16}=-\frac{1}{-16}
Divide both sides by -16.
x^{2}+\frac{4}{-16}x=-\frac{1}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{1}{4}x=-\frac{1}{-16}
Reduce the fraction \frac{4}{-16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{4}x=\frac{1}{16}
Divide -1 by -16.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{1}{16}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{16}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{5}{64}
Add \frac{1}{16} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{5}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{5}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{5}}{8} x-\frac{1}{8}=-\frac{\sqrt{5}}{8}
Simplify.
x=\frac{\sqrt{5}+1}{8} x=\frac{1-\sqrt{5}}{8}
Add \frac{1}{8} to both sides of the equation.