Factor
-16\left(t-\frac{5-\sqrt{29}}{4}\right)\left(t-\frac{\sqrt{29}+5}{4}\right)
Evaluate
4+40t-16t^{2}
Share
Copied to clipboard
-16t^{2}+40t+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-40±\sqrt{40^{2}-4\left(-16\right)\times 4}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-40±\sqrt{1600-4\left(-16\right)\times 4}}{2\left(-16\right)}
Square 40.
t=\frac{-40±\sqrt{1600+64\times 4}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-40±\sqrt{1600+256}}{2\left(-16\right)}
Multiply 64 times 4.
t=\frac{-40±\sqrt{1856}}{2\left(-16\right)}
Add 1600 to 256.
t=\frac{-40±8\sqrt{29}}{2\left(-16\right)}
Take the square root of 1856.
t=\frac{-40±8\sqrt{29}}{-32}
Multiply 2 times -16.
t=\frac{8\sqrt{29}-40}{-32}
Now solve the equation t=\frac{-40±8\sqrt{29}}{-32} when ± is plus. Add -40 to 8\sqrt{29}.
t=\frac{5-\sqrt{29}}{4}
Divide -40+8\sqrt{29} by -32.
t=\frac{-8\sqrt{29}-40}{-32}
Now solve the equation t=\frac{-40±8\sqrt{29}}{-32} when ± is minus. Subtract 8\sqrt{29} from -40.
t=\frac{\sqrt{29}+5}{4}
Divide -40-8\sqrt{29} by -32.
-16t^{2}+40t+4=-16\left(t-\frac{5-\sqrt{29}}{4}\right)\left(t-\frac{\sqrt{29}+5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5-\sqrt{29}}{4} for x_{1} and \frac{5+\sqrt{29}}{4} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}