Factor
-13\left(x-12\right)\left(x+2\right)
Evaluate
-13\left(x-12\right)\left(x+2\right)
Graph
Share
Copied to clipboard
13\left(-x^{2}+10x+24\right)
Factor out 13.
a+b=10 ab=-24=-24
Consider -x^{2}+10x+24. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=12 b=-2
The solution is the pair that gives sum 10.
\left(-x^{2}+12x\right)+\left(-2x+24\right)
Rewrite -x^{2}+10x+24 as \left(-x^{2}+12x\right)+\left(-2x+24\right).
-x\left(x-12\right)-2\left(x-12\right)
Factor out -x in the first and -2 in the second group.
\left(x-12\right)\left(-x-2\right)
Factor out common term x-12 by using distributive property.
13\left(x-12\right)\left(-x-2\right)
Rewrite the complete factored expression.
-13x^{2}+130x+312=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-130±\sqrt{130^{2}-4\left(-13\right)\times 312}}{2\left(-13\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-130±\sqrt{16900-4\left(-13\right)\times 312}}{2\left(-13\right)}
Square 130.
x=\frac{-130±\sqrt{16900+52\times 312}}{2\left(-13\right)}
Multiply -4 times -13.
x=\frac{-130±\sqrt{16900+16224}}{2\left(-13\right)}
Multiply 52 times 312.
x=\frac{-130±\sqrt{33124}}{2\left(-13\right)}
Add 16900 to 16224.
x=\frac{-130±182}{2\left(-13\right)}
Take the square root of 33124.
x=\frac{-130±182}{-26}
Multiply 2 times -13.
x=\frac{52}{-26}
Now solve the equation x=\frac{-130±182}{-26} when ± is plus. Add -130 to 182.
x=-2
Divide 52 by -26.
x=-\frac{312}{-26}
Now solve the equation x=\frac{-130±182}{-26} when ± is minus. Subtract 182 from -130.
x=12
Divide -312 by -26.
-13x^{2}+130x+312=-13\left(x-\left(-2\right)\right)\left(x-12\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 12 for x_{2}.
-13x^{2}+130x+312=-13\left(x+2\right)\left(x-12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}