Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-13 ab=-12\times 14=-168
Factor the expression by grouping. First, the expression needs to be rewritten as -12x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
1,-168 2,-84 3,-56 4,-42 6,-28 7,-24 8,-21 12,-14
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -168.
1-168=-167 2-84=-82 3-56=-53 4-42=-38 6-28=-22 7-24=-17 8-21=-13 12-14=-2
Calculate the sum for each pair.
a=8 b=-21
The solution is the pair that gives sum -13.
\left(-12x^{2}+8x\right)+\left(-21x+14\right)
Rewrite -12x^{2}-13x+14 as \left(-12x^{2}+8x\right)+\left(-21x+14\right).
-4x\left(3x-2\right)-7\left(3x-2\right)
Factor out -4x in the first and -7 in the second group.
\left(3x-2\right)\left(-4x-7\right)
Factor out common term 3x-2 by using distributive property.
-12x^{2}-13x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-12\right)\times 14}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-12\right)\times 14}}{2\left(-12\right)}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+48\times 14}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-13\right)±\sqrt{169+672}}{2\left(-12\right)}
Multiply 48 times 14.
x=\frac{-\left(-13\right)±\sqrt{841}}{2\left(-12\right)}
Add 169 to 672.
x=\frac{-\left(-13\right)±29}{2\left(-12\right)}
Take the square root of 841.
x=\frac{13±29}{2\left(-12\right)}
The opposite of -13 is 13.
x=\frac{13±29}{-24}
Multiply 2 times -12.
x=\frac{42}{-24}
Now solve the equation x=\frac{13±29}{-24} when ± is plus. Add 13 to 29.
x=-\frac{7}{4}
Reduce the fraction \frac{42}{-24} to lowest terms by extracting and canceling out 6.
x=-\frac{16}{-24}
Now solve the equation x=\frac{13±29}{-24} when ± is minus. Subtract 29 from 13.
x=\frac{2}{3}
Reduce the fraction \frac{-16}{-24} to lowest terms by extracting and canceling out 8.
-12x^{2}-13x+14=-12\left(x-\left(-\frac{7}{4}\right)\right)\left(x-\frac{2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{4} for x_{1} and \frac{2}{3} for x_{2}.
-12x^{2}-13x+14=-12\left(x+\frac{7}{4}\right)\left(x-\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-12x^{2}-13x+14=-12\times \frac{-4x-7}{-4}\left(x-\frac{2}{3}\right)
Add \frac{7}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-12x^{2}-13x+14=-12\times \frac{-4x-7}{-4}\times \frac{-3x+2}{-3}
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-12x^{2}-13x+14=-12\times \frac{\left(-4x-7\right)\left(-3x+2\right)}{-4\left(-3\right)}
Multiply \frac{-4x-7}{-4} times \frac{-3x+2}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-12x^{2}-13x+14=-12\times \frac{\left(-4x-7\right)\left(-3x+2\right)}{12}
Multiply -4 times -3.
-12x^{2}-13x+14=-\left(-4x-7\right)\left(-3x+2\right)
Cancel out 12, the greatest common factor in -12 and 12.