Solve for x
x = \frac{\sqrt{409} + 17}{2} \approx 18.611874208
x=\frac{17-\sqrt{409}}{2}\approx -1.611874208
Graph
Share
Copied to clipboard
-1000x^{2}+17000x+30000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17000±\sqrt{17000^{2}-4\left(-1000\right)\times 30000}}{2\left(-1000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1000 for a, 17000 for b, and 30000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17000±\sqrt{289000000-4\left(-1000\right)\times 30000}}{2\left(-1000\right)}
Square 17000.
x=\frac{-17000±\sqrt{289000000+4000\times 30000}}{2\left(-1000\right)}
Multiply -4 times -1000.
x=\frac{-17000±\sqrt{289000000+120000000}}{2\left(-1000\right)}
Multiply 4000 times 30000.
x=\frac{-17000±\sqrt{409000000}}{2\left(-1000\right)}
Add 289000000 to 120000000.
x=\frac{-17000±1000\sqrt{409}}{2\left(-1000\right)}
Take the square root of 409000000.
x=\frac{-17000±1000\sqrt{409}}{-2000}
Multiply 2 times -1000.
x=\frac{1000\sqrt{409}-17000}{-2000}
Now solve the equation x=\frac{-17000±1000\sqrt{409}}{-2000} when ± is plus. Add -17000 to 1000\sqrt{409}.
x=\frac{17-\sqrt{409}}{2}
Divide -17000+1000\sqrt{409} by -2000.
x=\frac{-1000\sqrt{409}-17000}{-2000}
Now solve the equation x=\frac{-17000±1000\sqrt{409}}{-2000} when ± is minus. Subtract 1000\sqrt{409} from -17000.
x=\frac{\sqrt{409}+17}{2}
Divide -17000-1000\sqrt{409} by -2000.
x=\frac{17-\sqrt{409}}{2} x=\frac{\sqrt{409}+17}{2}
The equation is now solved.
-1000x^{2}+17000x+30000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-1000x^{2}+17000x+30000-30000=-30000
Subtract 30000 from both sides of the equation.
-1000x^{2}+17000x=-30000
Subtracting 30000 from itself leaves 0.
\frac{-1000x^{2}+17000x}{-1000}=-\frac{30000}{-1000}
Divide both sides by -1000.
x^{2}+\frac{17000}{-1000}x=-\frac{30000}{-1000}
Dividing by -1000 undoes the multiplication by -1000.
x^{2}-17x=-\frac{30000}{-1000}
Divide 17000 by -1000.
x^{2}-17x=30
Divide -30000 by -1000.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=30+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=30+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{409}{4}
Add 30 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{409}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{409}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{409}}{2} x-\frac{17}{2}=-\frac{\sqrt{409}}{2}
Simplify.
x=\frac{\sqrt{409}+17}{2} x=\frac{17-\sqrt{409}}{2}
Add \frac{17}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}