Solve for x
x=\frac{\sqrt{34}}{10}+\frac{4}{5}\approx 1.383095189
x=-\frac{\sqrt{34}}{10}+\frac{4}{5}\approx 0.216904811
Graph
Share
Copied to clipboard
-10x^{2}+16x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-10\right)\left(-3\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-10\right)\left(-3\right)}}{2\left(-10\right)}
Square 16.
x=\frac{-16±\sqrt{256+40\left(-3\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-16±\sqrt{256-120}}{2\left(-10\right)}
Multiply 40 times -3.
x=\frac{-16±\sqrt{136}}{2\left(-10\right)}
Add 256 to -120.
x=\frac{-16±2\sqrt{34}}{2\left(-10\right)}
Take the square root of 136.
x=\frac{-16±2\sqrt{34}}{-20}
Multiply 2 times -10.
x=\frac{2\sqrt{34}-16}{-20}
Now solve the equation x=\frac{-16±2\sqrt{34}}{-20} when ± is plus. Add -16 to 2\sqrt{34}.
x=-\frac{\sqrt{34}}{10}+\frac{4}{5}
Divide -16+2\sqrt{34} by -20.
x=\frac{-2\sqrt{34}-16}{-20}
Now solve the equation x=\frac{-16±2\sqrt{34}}{-20} when ± is minus. Subtract 2\sqrt{34} from -16.
x=\frac{\sqrt{34}}{10}+\frac{4}{5}
Divide -16-2\sqrt{34} by -20.
x=-\frac{\sqrt{34}}{10}+\frac{4}{5} x=\frac{\sqrt{34}}{10}+\frac{4}{5}
The equation is now solved.
-10x^{2}+16x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}+16x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-10x^{2}+16x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-10x^{2}+16x=3
Subtract -3 from 0.
\frac{-10x^{2}+16x}{-10}=\frac{3}{-10}
Divide both sides by -10.
x^{2}+\frac{16}{-10}x=\frac{3}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{8}{5}x=\frac{3}{-10}
Reduce the fraction \frac{16}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{8}{5}x=-\frac{3}{10}
Divide 3 by -10.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{3}{10}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{3}{10}+\frac{16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{17}{50}
Add -\frac{3}{10} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=\frac{17}{50}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{17}{50}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{\sqrt{34}}{10} x-\frac{4}{5}=-\frac{\sqrt{34}}{10}
Simplify.
x=\frac{\sqrt{34}}{10}+\frac{4}{5} x=-\frac{\sqrt{34}}{10}+\frac{4}{5}
Add \frac{4}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}