Factor
10\left(30-x\right)\left(x-70\right)
Evaluate
10\left(30-x\right)\left(x-70\right)
Graph
Share
Copied to clipboard
10\left(-x^{2}+100x-2100\right)
Factor out 10.
a+b=100 ab=-\left(-2100\right)=2100
Consider -x^{2}+100x-2100. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-2100. To find a and b, set up a system to be solved.
1,2100 2,1050 3,700 4,525 5,420 6,350 7,300 10,210 12,175 14,150 15,140 20,105 21,100 25,84 28,75 30,70 35,60 42,50
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 2100.
1+2100=2101 2+1050=1052 3+700=703 4+525=529 5+420=425 6+350=356 7+300=307 10+210=220 12+175=187 14+150=164 15+140=155 20+105=125 21+100=121 25+84=109 28+75=103 30+70=100 35+60=95 42+50=92
Calculate the sum for each pair.
a=70 b=30
The solution is the pair that gives sum 100.
\left(-x^{2}+70x\right)+\left(30x-2100\right)
Rewrite -x^{2}+100x-2100 as \left(-x^{2}+70x\right)+\left(30x-2100\right).
-x\left(x-70\right)+30\left(x-70\right)
Factor out -x in the first and 30 in the second group.
\left(x-70\right)\left(-x+30\right)
Factor out common term x-70 by using distributive property.
10\left(x-70\right)\left(-x+30\right)
Rewrite the complete factored expression.
-10x^{2}+1000x-21000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1000±\sqrt{1000^{2}-4\left(-10\right)\left(-21000\right)}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1000±\sqrt{1000000-4\left(-10\right)\left(-21000\right)}}{2\left(-10\right)}
Square 1000.
x=\frac{-1000±\sqrt{1000000+40\left(-21000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1000±\sqrt{1000000-840000}}{2\left(-10\right)}
Multiply 40 times -21000.
x=\frac{-1000±\sqrt{160000}}{2\left(-10\right)}
Add 1000000 to -840000.
x=\frac{-1000±400}{2\left(-10\right)}
Take the square root of 160000.
x=\frac{-1000±400}{-20}
Multiply 2 times -10.
x=-\frac{600}{-20}
Now solve the equation x=\frac{-1000±400}{-20} when ± is plus. Add -1000 to 400.
x=30
Divide -600 by -20.
x=-\frac{1400}{-20}
Now solve the equation x=\frac{-1000±400}{-20} when ± is minus. Subtract 400 from -1000.
x=70
Divide -1400 by -20.
-10x^{2}+1000x-21000=-10\left(x-30\right)\left(x-70\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 30 for x_{1} and 70 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}