Evaluate
\frac{719}{45}\approx 15.977777778
Factor
\frac{719}{5 \cdot 3 ^ {2}} = 15\frac{44}{45} = 15.977777777777778
Share
Copied to clipboard
-1.8+\frac{32\times 5}{9}
Express 32\times \frac{5}{9} as a single fraction.
-1.8+\frac{160}{9}
Multiply 32 and 5 to get 160.
-\frac{9}{5}+\frac{160}{9}
Convert decimal number -1.8 to fraction -\frac{18}{10}. Reduce the fraction -\frac{18}{10} to lowest terms by extracting and canceling out 2.
-\frac{81}{45}+\frac{800}{45}
Least common multiple of 5 and 9 is 45. Convert -\frac{9}{5} and \frac{160}{9} to fractions with denominator 45.
\frac{-81+800}{45}
Since -\frac{81}{45} and \frac{800}{45} have the same denominator, add them by adding their numerators.
\frac{719}{45}
Add -81 and 800 to get 719.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}