Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x-2\right)x=3\left(2x-3\right)
To find the opposite of x+2, find the opposite of each term.
-x^{2}-2x=3\left(2x-3\right)
Use the distributive property to multiply -x-2 by x.
-x^{2}-2x=6x-9
Use the distributive property to multiply 3 by 2x-3.
-x^{2}-2x-6x=-9
Subtract 6x from both sides.
-x^{2}-8x=-9
Combine -2x and -6x to get -8x.
-x^{2}-8x+9=0
Add 9 to both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -8 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 9}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 9}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64+36}}{2\left(-1\right)}
Multiply 4 times 9.
x=\frac{-\left(-8\right)±\sqrt{100}}{2\left(-1\right)}
Add 64 to 36.
x=\frac{-\left(-8\right)±10}{2\left(-1\right)}
Take the square root of 100.
x=\frac{8±10}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±10}{-2}
Multiply 2 times -1.
x=\frac{18}{-2}
Now solve the equation x=\frac{8±10}{-2} when ± is plus. Add 8 to 10.
x=-9
Divide 18 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{8±10}{-2} when ± is minus. Subtract 10 from 8.
x=1
Divide -2 by -2.
x=-9 x=1
The equation is now solved.
\left(-x-2\right)x=3\left(2x-3\right)
To find the opposite of x+2, find the opposite of each term.
-x^{2}-2x=3\left(2x-3\right)
Use the distributive property to multiply -x-2 by x.
-x^{2}-2x=6x-9
Use the distributive property to multiply 3 by 2x-3.
-x^{2}-2x-6x=-9
Subtract 6x from both sides.
-x^{2}-8x=-9
Combine -2x and -6x to get -8x.
\frac{-x^{2}-8x}{-1}=-\frac{9}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{9}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+8x=-\frac{9}{-1}
Divide -8 by -1.
x^{2}+8x=9
Divide -9 by -1.
x^{2}+8x+4^{2}=9+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=9+16
Square 4.
x^{2}+8x+16=25
Add 9 to 16.
\left(x+4\right)^{2}=25
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x+4=5 x+4=-5
Simplify.
x=1 x=-9
Subtract 4 from both sides of the equation.