Solve for x
x = -\frac{11}{2} = -5\frac{1}{2} = -5.5
Graph
Share
Copied to clipboard
-\left(2x+7-\left(-1+3x-\left(-4x\right)-9-\left(3x+4\right)\right)-29\right)=-3
To find the opposite of -4x+9, find the opposite of each term.
-\left(2x+7-\left(-1+3x+4x-9-\left(3x+4\right)\right)-29\right)=-3
The opposite of -4x is 4x.
-\left(2x+7-\left(-1+7x-9-\left(3x+4\right)\right)-29\right)=-3
Combine 3x and 4x to get 7x.
-\left(2x+7-\left(-10+7x-\left(3x+4\right)\right)-29\right)=-3
Subtract 9 from -1 to get -10.
-\left(2x+7-\left(-10+7x-3x-4\right)-29\right)=-3
To find the opposite of 3x+4, find the opposite of each term.
-\left(2x+7-\left(-10+4x-4\right)-29\right)=-3
Combine 7x and -3x to get 4x.
-\left(2x+7-\left(-14+4x\right)-29\right)=-3
Subtract 4 from -10 to get -14.
-\left(2x+7-\left(-14\right)-4x-29\right)=-3
To find the opposite of -14+4x, find the opposite of each term.
-\left(2x+7+14-4x-29\right)=-3
The opposite of -14 is 14.
-\left(2x+21-4x-29\right)=-3
Add 7 and 14 to get 21.
-\left(-2x+21-29\right)=-3
Combine 2x and -4x to get -2x.
-\left(-2x-8\right)=-3
Subtract 29 from 21 to get -8.
-\left(-2x\right)-\left(-8\right)=-3
To find the opposite of -2x-8, find the opposite of each term.
2x-\left(-8\right)=-3
The opposite of -2x is 2x.
2x+8=-3
The opposite of -8 is 8.
2x=-3-8
Subtract 8 from both sides.
2x=-11
Subtract 8 from -3 to get -11.
x=\frac{-11}{2}
Divide both sides by 2.
x=-\frac{11}{2}
Fraction \frac{-11}{2} can be rewritten as -\frac{11}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}