Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
3\times \frac{-\left(1-\frac{1}{4}x\right)}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
Multiply both sides of the equation by 3.
3\times \frac{-1-\left(-\frac{1}{4}x\right)}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
To find the opposite of 1-\frac{1}{4}x, find the opposite of each term.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
The opposite of -\frac{1}{4}x is \frac{1}{4}x.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-x+1
Combine -3x and 2x to get -x.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Add 6 and 1 to get 7.
3\left(\frac{-1}{\frac{3}{2}}+\frac{\frac{1}{4}x}{\frac{3}{2}}\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide each term of -1+\frac{1}{4}x by \frac{3}{2} to get \frac{-1}{\frac{3}{2}}+\frac{\frac{1}{4}x}{\frac{3}{2}}.
3\left(-\frac{2}{3}+\frac{\frac{1}{4}x}{\frac{3}{2}}\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide -1 by \frac{3}{2} by multiplying -1 by the reciprocal of \frac{3}{2}.
3\left(-\frac{2}{3}+\frac{1}{6}x\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide \frac{1}{4}x by \frac{3}{2} to get \frac{1}{6}x.
3\left(-\frac{2}{3}\right)+3\times \frac{1}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Use the distributive property to multiply 3 by -\frac{2}{3}+\frac{1}{6}x.
-2+3\times \frac{1}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Cancel out 3 and 3.
-2+\frac{3}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
-2+\frac{1}{2}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}+\frac{-2}{-\frac{2}{3}}\right)=7-x
Divide each term of \frac{x}{3}-2 by -\frac{2}{3} to get \frac{\frac{x}{3}}{-\frac{2}{3}}+\frac{-2}{-\frac{2}{3}}.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}-2\left(-\frac{3}{2}\right)\right)=7-x
Divide -2 by -\frac{2}{3} by multiplying -2 by the reciprocal of -\frac{2}{3}.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}+3\right)=7-x
Multiply -2 times -\frac{3}{2}.
-2+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}+9=7-x
Use the distributive property to multiply 3 by \frac{\frac{x}{3}}{-\frac{2}{3}}+3.
7+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7-x
Add -2 and 9 to get 7.
7+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}+x=7
Add x to both sides.
7+\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7
Combine \frac{1}{2}x and x to get \frac{3}{2}x.
\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7-7
Subtract 7 from both sides.
\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=0
Subtract 7 from 7 to get 0.
3\times \frac{x}{-\frac{2}{3}\times 3}+\frac{3}{2}x=0
Reorder the terms.
3\times \frac{x}{-2}+\frac{3}{2}x=0
Cancel out 3 and 3.
\frac{3x}{-2}+\frac{3}{2}x=0
Express 3\times \frac{x}{-2} as a single fraction.
-3x+3x=0
Multiply both sides of the equation by 2, the least common multiple of -2,2.
0=0
Combine -3x and 3x to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
3\times \frac{-\left(1-\frac{1}{4}x\right)}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
Multiply both sides of the equation by 3.
3\times \frac{-1-\left(-\frac{1}{4}x\right)}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
To find the opposite of 1-\frac{1}{4}x, find the opposite of each term.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-3x+2x+1
The opposite of -\frac{1}{4}x is \frac{1}{4}x.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=6-x+1
Combine -3x and 2x to get -x.
3\times \frac{-1+\frac{1}{4}x}{\frac{3}{2}}+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Add 6 and 1 to get 7.
3\left(\frac{-1}{\frac{3}{2}}+\frac{\frac{1}{4}x}{\frac{3}{2}}\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide each term of -1+\frac{1}{4}x by \frac{3}{2} to get \frac{-1}{\frac{3}{2}}+\frac{\frac{1}{4}x}{\frac{3}{2}}.
3\left(-\frac{2}{3}+\frac{\frac{1}{4}x}{\frac{3}{2}}\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide -1 by \frac{3}{2} by multiplying -1 by the reciprocal of \frac{3}{2}.
3\left(-\frac{2}{3}+\frac{1}{6}x\right)+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Divide \frac{1}{4}x by \frac{3}{2} to get \frac{1}{6}x.
3\left(-\frac{2}{3}\right)+3\times \frac{1}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Use the distributive property to multiply 3 by -\frac{2}{3}+\frac{1}{6}x.
-2+3\times \frac{1}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Cancel out 3 and 3.
-2+\frac{3}{6}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
-2+\frac{1}{2}x+3\times \frac{\frac{x}{3}-2}{-\frac{2}{3}}=7-x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}+\frac{-2}{-\frac{2}{3}}\right)=7-x
Divide each term of \frac{x}{3}-2 by -\frac{2}{3} to get \frac{\frac{x}{3}}{-\frac{2}{3}}+\frac{-2}{-\frac{2}{3}}.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}-2\left(-\frac{3}{2}\right)\right)=7-x
Divide -2 by -\frac{2}{3} by multiplying -2 by the reciprocal of -\frac{2}{3}.
-2+\frac{1}{2}x+3\left(\frac{\frac{x}{3}}{-\frac{2}{3}}+3\right)=7-x
Multiply -2 times -\frac{3}{2}.
-2+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}+9=7-x
Use the distributive property to multiply 3 by \frac{\frac{x}{3}}{-\frac{2}{3}}+3.
7+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7-x
Add -2 and 9 to get 7.
7+\frac{1}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}+x=7
Add x to both sides.
7+\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7
Combine \frac{1}{2}x and x to get \frac{3}{2}x.
\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=7-7
Subtract 7 from both sides.
\frac{3}{2}x+3\times \frac{\frac{x}{3}}{-\frac{2}{3}}=0
Subtract 7 from 7 to get 0.
3\times \frac{x}{-\frac{2}{3}\times 3}+\frac{3}{2}x=0
Reorder the terms.
3\times \frac{x}{-2}+\frac{3}{2}x=0
Cancel out 3 and 3.
\frac{3x}{-2}+\frac{3}{2}x=0
Express 3\times \frac{x}{-2} as a single fraction.
-3x+3x=0
Multiply both sides of the equation by 2, the least common multiple of -2,2.
0=0
Combine -3x and 3x to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}