Solve for y
y=-\frac{11y_{y}}{20}+\frac{75}{4}
Solve for y_y
y_{y}=\frac{375-20y}{11}
Graph
Share
Copied to clipboard
-11y_{y}=-66+76+20y-385
Multiply both sides of the equation by 11.
-11y_{y}=10+20y-385
Add -66 and 76 to get 10.
-11y_{y}=-375+20y
Subtract 385 from 10 to get -375.
-375+20y=-11y_{y}
Swap sides so that all variable terms are on the left hand side.
20y=-11y_{y}+375
Add 375 to both sides.
20y=375-11y_{y}
The equation is in standard form.
\frac{20y}{20}=\frac{375-11y_{y}}{20}
Divide both sides by 20.
y=\frac{375-11y_{y}}{20}
Dividing by 20 undoes the multiplication by 20.
y=-\frac{11y_{y}}{20}+\frac{75}{4}
Divide -11y_{y}+375 by 20.
-11y_{y}=-66+76+20y-385
Multiply both sides of the equation by 11.
-11y_{y}=10+20y-385
Add -66 and 76 to get 10.
-11y_{y}=-375+20y
Subtract 385 from 10 to get -375.
-11y_{y}=20y-375
The equation is in standard form.
\frac{-11y_{y}}{-11}=\frac{20y-375}{-11}
Divide both sides by -11.
y_{y}=\frac{20y-375}{-11}
Dividing by -11 undoes the multiplication by -11.
y_{y}=\frac{375-20y}{11}
Divide -375+20y by -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}