Solve for x
x>\frac{7}{11}
Graph
Share
Copied to clipboard
-x-8x+13<2x+31-25
Combine -2x and 4x to get 2x.
-x-8x+13<2x+6
Subtract 25 from 31 to get 6.
-x-8x+13-2x<6
Subtract 2x from both sides.
-x-10x+13<6
Combine -8x and -2x to get -10x.
-x-10x<6-13
Subtract 13 from both sides.
-x-10x<-7
Subtract 13 from 6 to get -7.
-11x<-7
Combine -x and -10x to get -11x.
x>\frac{-7}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
x>\frac{7}{11}
Fraction \frac{-7}{-11} can be simplified to \frac{7}{11} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}