Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x\right)\times \frac{1}{3}-\left(-x\right)x=\frac{4}{9}
Use the distributive property to multiply -x by \frac{1}{3}-x.
\left(-x\right)\times \frac{1}{3}+xx=\frac{4}{9}
Multiply -1 and -1 to get 1.
\left(-x\right)\times \frac{1}{3}+x^{2}=\frac{4}{9}
Multiply x and x to get x^{2}.
\left(-x\right)\times \frac{1}{3}+x^{2}-\frac{4}{9}=0
Subtract \frac{4}{9} from both sides.
-\frac{1}{3}x+x^{2}-\frac{4}{9}=0
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
x^{2}-\frac{1}{3}x-\frac{4}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\left(-\frac{4}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{3} for b, and -\frac{4}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\left(-\frac{4}{9}\right)}}{2}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1+16}{9}}}{2}
Multiply -4 times -\frac{4}{9}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{17}{9}}}{2}
Add \frac{1}{9} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{17}}{3}}{2}
Take the square root of \frac{17}{9}.
x=\frac{\frac{1}{3}±\frac{\sqrt{17}}{3}}{2}
The opposite of -\frac{1}{3} is \frac{1}{3}.
x=\frac{\sqrt{17}+1}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{17}}{3}}{2} when ± is plus. Add \frac{1}{3} to \frac{\sqrt{17}}{3}.
x=\frac{\sqrt{17}+1}{6}
Divide \frac{1+\sqrt{17}}{3} by 2.
x=\frac{1-\sqrt{17}}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{17}}{3}}{2} when ± is minus. Subtract \frac{\sqrt{17}}{3} from \frac{1}{3}.
x=\frac{1-\sqrt{17}}{6}
Divide \frac{1-\sqrt{17}}{3} by 2.
x=\frac{\sqrt{17}+1}{6} x=\frac{1-\sqrt{17}}{6}
The equation is now solved.
\left(-x\right)\times \frac{1}{3}-\left(-x\right)x=\frac{4}{9}
Use the distributive property to multiply -x by \frac{1}{3}-x.
\left(-x\right)\times \frac{1}{3}+xx=\frac{4}{9}
Multiply -1 and -1 to get 1.
\left(-x\right)\times \frac{1}{3}+x^{2}=\frac{4}{9}
Multiply x and x to get x^{2}.
-\frac{1}{3}x+x^{2}=\frac{4}{9}
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
x^{2}-\frac{1}{3}x=\frac{4}{9}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{4}{9}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{4}{9}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{17}{36}
Add \frac{4}{9} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{17}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{17}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{17}}{6} x-\frac{1}{6}=-\frac{\sqrt{17}}{6}
Simplify.
x=\frac{\sqrt{17}+1}{6} x=\frac{1-\sqrt{17}}{6}
Add \frac{1}{6} to both sides of the equation.