Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(9+x^{4}\right)\left(9-x^{4}\right)
Rewrite -x^{8}+81 as 9^{2}-\left(-x^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}+9\right)\left(-x^{4}+9\right)
Reorder the terms.
\left(3+x^{2}\right)\left(3-x^{2}\right)
Consider -x^{4}+9. Rewrite -x^{4}+9 as 3^{2}-\left(-x^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}+3\right)\left(-x^{2}+3\right)
Reorder the terms.
\left(-x^{2}+3\right)\left(x^{2}+3\right)\left(x^{4}+9\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -x^{2}+3,x^{2}+3,x^{4}+9.