Solve for x (complex solution)
x=\sqrt{14}-3\approx 0.741657387
x=-\left(\sqrt{14}+3\right)\approx -6.741657387
Solve for x
x=\sqrt{14}-3\approx 0.741657387
x=-\sqrt{14}-3\approx -6.741657387
Graph
Share
Copied to clipboard
-x^{2}-6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Add 36 to 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{14}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is plus. Add 6 to 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Divide 6+2\sqrt{14} by -2.
x=\frac{6-2\sqrt{14}}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from 6.
x=\sqrt{14}-3
Divide 6-2\sqrt{14} by -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
The equation is now solved.
-x^{2}-6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Subtract 5 from both sides of the equation.
-x^{2}-6x=-5
Subtracting 5 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{5}{-1}
Divide -6 by -1.
x^{2}+6x=5
Divide -5 by -1.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.
x ^ 2 +6x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -6 rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -3 - u s = -3 + u
Two numbers r and s sum up to -6 exactly when the average of the two numbers is \frac{1}{2}*-6 = -3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-3 - u) (-3 + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
9 - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-9 = -14
Simplify the expression by subtracting 9 on both sides
u^2 = 14 u = \pm\sqrt{14} = \pm \sqrt{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-3 - \sqrt{14} = -6.742 s = -3 + \sqrt{14} = 0.742
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
-x^{2}-6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Add 36 to 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{14}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is plus. Add 6 to 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Divide 6+2\sqrt{14} by -2.
x=\frac{6-2\sqrt{14}}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from 6.
x=\sqrt{14}-3
Divide 6-2\sqrt{14} by -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
The equation is now solved.
-x^{2}-6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Subtract 5 from both sides of the equation.
-x^{2}-6x=-5
Subtracting 5 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{5}{-1}
Divide -6 by -1.
x^{2}+6x=5
Divide -5 by -1.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}