Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-44x+65=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\left(-1\right)\times 65}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-44\right)±\sqrt{1936-4\left(-1\right)\times 65}}{2\left(-1\right)}
Square -44.
x=\frac{-\left(-44\right)±\sqrt{1936+4\times 65}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-44\right)±\sqrt{1936+260}}{2\left(-1\right)}
Multiply 4 times 65.
x=\frac{-\left(-44\right)±\sqrt{2196}}{2\left(-1\right)}
Add 1936 to 260.
x=\frac{-\left(-44\right)±6\sqrt{61}}{2\left(-1\right)}
Take the square root of 2196.
x=\frac{44±6\sqrt{61}}{2\left(-1\right)}
The opposite of -44 is 44.
x=\frac{44±6\sqrt{61}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{61}+44}{-2}
Now solve the equation x=\frac{44±6\sqrt{61}}{-2} when ± is plus. Add 44 to 6\sqrt{61}.
x=-3\sqrt{61}-22
Divide 44+6\sqrt{61} by -2.
x=\frac{44-6\sqrt{61}}{-2}
Now solve the equation x=\frac{44±6\sqrt{61}}{-2} when ± is minus. Subtract 6\sqrt{61} from 44.
x=3\sqrt{61}-22
Divide 44-6\sqrt{61} by -2.
-x^{2}-44x+65=-\left(x-\left(-3\sqrt{61}-22\right)\right)\left(x-\left(3\sqrt{61}-22\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -22-3\sqrt{61} for x_{1} and -22+3\sqrt{61} for x_{2}.
x ^ 2 +44x -65 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -44 rs = -65
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -22 - u s = -22 + u
Two numbers r and s sum up to -44 exactly when the average of the two numbers is \frac{1}{2}*-44 = -22. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-22 - u) (-22 + u) = -65
To solve for unknown quantity u, substitute these in the product equation rs = -65
484 - u^2 = -65
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -65-484 = -549
Simplify the expression by subtracting 484 on both sides
u^2 = 549 u = \pm\sqrt{549} = \pm \sqrt{549}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-22 - \sqrt{549} = -45.431 s = -22 + \sqrt{549} = 1.431
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.