Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(-x-4\right)
Factor out x.
-x^{2}-4x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±4}{2\left(-1\right)}
Take the square root of \left(-4\right)^{2}.
x=\frac{4±4}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±4}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{4±4}{-2} when ± is plus. Add 4 to 4.
x=-4
Divide 8 by -2.
x=\frac{0}{-2}
Now solve the equation x=\frac{4±4}{-2} when ± is minus. Subtract 4 from 4.
x=0
Divide 0 by -2.
-x^{2}-4x=-\left(x-\left(-4\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and 0 for x_{2}.
-x^{2}-4x=-\left(x+4\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.