Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+3=\frac{1}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-2x+3-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
-x^{2}-2x+3-\frac{1}{4}=0
Subtracting \frac{1}{4} from itself leaves 0.
-x^{2}-2x+\frac{11}{4}=0
Subtract \frac{1}{4} from 3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times \frac{11}{4}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and \frac{11}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times \frac{11}{4}}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times \frac{11}{4}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+11}}{2\left(-1\right)}
Multiply 4 times \frac{11}{4}.
x=\frac{-\left(-2\right)±\sqrt{15}}{2\left(-1\right)}
Add 4 to 11.
x=\frac{2±\sqrt{15}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±\sqrt{15}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{15}+2}{-2}
Now solve the equation x=\frac{2±\sqrt{15}}{-2} when ± is plus. Add 2 to \sqrt{15}.
x=-\frac{\sqrt{15}}{2}-1
Divide 2+\sqrt{15} by -2.
x=\frac{2-\sqrt{15}}{-2}
Now solve the equation x=\frac{2±\sqrt{15}}{-2} when ± is minus. Subtract \sqrt{15} from 2.
x=\frac{\sqrt{15}}{2}-1
Divide 2-\sqrt{15} by -2.
x=-\frac{\sqrt{15}}{2}-1 x=\frac{\sqrt{15}}{2}-1
The equation is now solved.
-x^{2}-2x+3=\frac{1}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-2x+3-3=\frac{1}{4}-3
Subtract 3 from both sides of the equation.
-x^{2}-2x=\frac{1}{4}-3
Subtracting 3 from itself leaves 0.
-x^{2}-2x=-\frac{11}{4}
Subtract 3 from \frac{1}{4}.
\frac{-x^{2}-2x}{-1}=-\frac{\frac{11}{4}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{\frac{11}{4}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{\frac{11}{4}}{-1}
Divide -2 by -1.
x^{2}+2x=\frac{11}{4}
Divide -\frac{11}{4} by -1.
x^{2}+2x+1^{2}=\frac{11}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{11}{4}+1
Square 1.
x^{2}+2x+1=\frac{15}{4}
Add \frac{11}{4} to 1.
\left(x+1\right)^{2}=\frac{15}{4}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{15}{4}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{15}}{2} x+1=-\frac{\sqrt{15}}{2}
Simplify.
x=\frac{\sqrt{15}}{2}-1 x=-\frac{\sqrt{15}}{2}-1
Subtract 1 from both sides of the equation.