Factor
\left(4-x\right)\left(x+15\right)
Evaluate
\left(4-x\right)\left(x+15\right)
Graph
Share
Copied to clipboard
a+b=-11 ab=-60=-60
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+60. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=4 b=-15
The solution is the pair that gives sum -11.
\left(-x^{2}+4x\right)+\left(-15x+60\right)
Rewrite -x^{2}-11x+60 as \left(-x^{2}+4x\right)+\left(-15x+60\right).
x\left(-x+4\right)+15\left(-x+4\right)
Factor out x in the first and 15 in the second group.
\left(-x+4\right)\left(x+15\right)
Factor out common term -x+4 by using distributive property.
-x^{2}-11x+60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\times 60}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\times 60}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\times 60}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2\left(-1\right)}
Multiply 4 times 60.
x=\frac{-\left(-11\right)±\sqrt{361}}{2\left(-1\right)}
Add 121 to 240.
x=\frac{-\left(-11\right)±19}{2\left(-1\right)}
Take the square root of 361.
x=\frac{11±19}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±19}{-2}
Multiply 2 times -1.
x=\frac{30}{-2}
Now solve the equation x=\frac{11±19}{-2} when ± is plus. Add 11 to 19.
x=-15
Divide 30 by -2.
x=-\frac{8}{-2}
Now solve the equation x=\frac{11±19}{-2} when ± is minus. Subtract 19 from 11.
x=4
Divide -8 by -2.
-x^{2}-11x+60=-\left(x-\left(-15\right)\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -15 for x_{1} and 4 for x_{2}.
-x^{2}-11x+60=-\left(x+15\right)\left(x-4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +11x -60 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -11 rs = -60
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{2} - u s = -\frac{11}{2} + u
Two numbers r and s sum up to -11 exactly when the average of the two numbers is \frac{1}{2}*-11 = -\frac{11}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{2} - u) (-\frac{11}{2} + u) = -60
To solve for unknown quantity u, substitute these in the product equation rs = -60
\frac{121}{4} - u^2 = -60
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -60-\frac{121}{4} = -\frac{361}{4}
Simplify the expression by subtracting \frac{121}{4} on both sides
u^2 = \frac{361}{4} u = \pm\sqrt{\frac{361}{4}} = \pm \frac{19}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{2} - \frac{19}{2} = -15 s = -\frac{11}{2} + \frac{19}{2} = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}