Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Use the distributive property to multiply -x^{2} by x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Multiply -13 and -1 to get 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Add 42 to both sides.
-x^{4}+13x^{2}+42=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-t^{2}+13t+42=0
Substitute t for x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 13 for b, and 42 for c in the quadratic formula.
t=\frac{-13±\sqrt{337}}{-2}
Do the calculations.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Solve the equation t=\frac{-13±\sqrt{337}}{-2} when ± is plus and when ± is minus.
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Use the distributive property to multiply -x^{2} by x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Multiply -13 and -1 to get 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Add 42 to both sides.
-x^{4}+13x^{2}+42=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-t^{2}+13t+42=0
Substitute t for x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 13 for b, and 42 for c in the quadratic formula.
t=\frac{-13±\sqrt{337}}{-2}
Do the calculations.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Solve the equation t=\frac{-13±\sqrt{337}}{-2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.