Solve for x (complex solution)
x=\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx 1.636697857i
x=-\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx -0-1.636697857i
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
Solve for x
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
Graph
Share
Copied to clipboard
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Use the distributive property to multiply -x^{2} by x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Multiply -13 and -1 to get 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Add 42 to both sides.
-x^{4}+13x^{2}+42=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-t^{2}+13t+42=0
Substitute t for x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 13 for b, and 42 for c in the quadratic formula.
t=\frac{-13±\sqrt{337}}{-2}
Do the calculations.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Solve the equation t=\frac{-13±\sqrt{337}}{-2} when ± is plus and when ± is minus.
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Use the distributive property to multiply -x^{2} by x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Multiply -13 and -1 to get 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Add 42 to both sides.
-x^{4}+13x^{2}+42=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-t^{2}+13t+42=0
Substitute t for x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 13 for b, and 42 for c in the quadratic formula.
t=\frac{-13±\sqrt{337}}{-2}
Do the calculations.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Solve the equation t=\frac{-13±\sqrt{337}}{-2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}