Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Share

x^{2}=-25
Divide both sides by -1.
x=5i x=-5i
The equation is now solved.
-x^{2}-25=0
Subtract 25 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-25\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-100}}{2\left(-1\right)}
Multiply 4 times -25.
x=\frac{0±10i}{2\left(-1\right)}
Take the square root of -100.
x=\frac{0±10i}{-2}
Multiply 2 times -1.
x=-5i
Now solve the equation x=\frac{0±10i}{-2} when ± is plus.
x=5i
Now solve the equation x=\frac{0±10i}{-2} when ± is minus.
x=-5i x=5i
The equation is now solved.