Evaluate
-\frac{x\left(x^{3}+3x^{2}+3x+10\right)}{\left(x+1\right)^{2}}
Expand
-\frac{x^{4}+3x^{3}+3x^{2}+10x}{\left(x+1\right)^{2}}
Graph
Share
Copied to clipboard
-x^{2}+\frac{x\left(2-x\right)}{x+1}+\left(\frac{2-x}{x+1}\right)^{2}-4
Express x\times \frac{2-x}{x+1} as a single fraction.
-x^{2}+\frac{x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}-4
To raise \frac{2-x}{x+1} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-x^{2}-4\right)\left(x+1\right)}{x+1}+\frac{x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}-4 times \frac{x+1}{x+1}.
\frac{\left(-x^{2}-4\right)\left(x+1\right)+x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Since \frac{\left(-x^{2}-4\right)\left(x+1\right)}{x+1} and \frac{x\left(2-x\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-x^{2}-4x-4+2x-x^{2}}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Do the multiplications in \left(-x^{2}-4\right)\left(x+1\right)+x\left(2-x\right).
\frac{-x^{3}-2x^{2}-2x-4}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Combine like terms in -x^{3}-x^{2}-4x-4+2x-x^{2}.
\frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)}{\left(x+1\right)^{2}}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x+1\right)^{2} is \left(x+1\right)^{2}. Multiply \frac{-x^{3}-2x^{2}-2x-4}{x+1} times \frac{x+1}{x+1}.
\frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)+\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Since \frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)}{\left(x+1\right)^{2}} and \frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{4}-x^{3}-2x^{3}-2x^{2}-2x^{2}-2x-4x-4+4-4x+x^{2}}{\left(x+1\right)^{2}}
Do the multiplications in \left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)+\left(2-x\right)^{2}.
\frac{-x^{4}-3x^{3}-3x^{2}-10x}{\left(x+1\right)^{2}}
Combine like terms in -x^{4}-x^{3}-2x^{3}-2x^{2}-2x^{2}-2x-4x-4+4-4x+x^{2}.
\frac{-x^{4}-3x^{3}-3x^{2}-10x}{x^{2}+2x+1}
Expand \left(x+1\right)^{2}.
-x^{2}+\frac{x\left(2-x\right)}{x+1}+\left(\frac{2-x}{x+1}\right)^{2}-4
Express x\times \frac{2-x}{x+1} as a single fraction.
-x^{2}+\frac{x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}-4
To raise \frac{2-x}{x+1} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-x^{2}-4\right)\left(x+1\right)}{x+1}+\frac{x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}-4 times \frac{x+1}{x+1}.
\frac{\left(-x^{2}-4\right)\left(x+1\right)+x\left(2-x\right)}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Since \frac{\left(-x^{2}-4\right)\left(x+1\right)}{x+1} and \frac{x\left(2-x\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{-x^{3}-x^{2}-4x-4+2x-x^{2}}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Do the multiplications in \left(-x^{2}-4\right)\left(x+1\right)+x\left(2-x\right).
\frac{-x^{3}-2x^{2}-2x-4}{x+1}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Combine like terms in -x^{3}-x^{2}-4x-4+2x-x^{2}.
\frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)}{\left(x+1\right)^{2}}+\frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x+1\right)^{2} is \left(x+1\right)^{2}. Multiply \frac{-x^{3}-2x^{2}-2x-4}{x+1} times \frac{x+1}{x+1}.
\frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)+\left(2-x\right)^{2}}{\left(x+1\right)^{2}}
Since \frac{\left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)}{\left(x+1\right)^{2}} and \frac{\left(2-x\right)^{2}}{\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{4}-x^{3}-2x^{3}-2x^{2}-2x^{2}-2x-4x-4+4-4x+x^{2}}{\left(x+1\right)^{2}}
Do the multiplications in \left(-x^{3}-2x^{2}-2x-4\right)\left(x+1\right)+\left(2-x\right)^{2}.
\frac{-x^{4}-3x^{3}-3x^{2}-10x}{\left(x+1\right)^{2}}
Combine like terms in -x^{4}-x^{3}-2x^{3}-2x^{2}-2x^{2}-2x-4x-4+4-4x+x^{2}.
\frac{-x^{4}-3x^{3}-3x^{2}-10x}{x^{2}+2x+1}
Expand \left(x+1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}