Solve for x
x = \frac{3 \sqrt{5} - 1}{2} \approx 2.854101966
x=\frac{-3\sqrt{5}-1}{2}\approx -3.854101966
Graph
Share
Copied to clipboard
-x^{2}+8-x=-3
Subtract x from both sides.
-x^{2}+8-x+3=0
Add 3 to both sides.
-x^{2}+11-x=0
Add 8 and 3 to get 11.
-x^{2}-x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 11}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+44}}{2\left(-1\right)}
Multiply 4 times 11.
x=\frac{-\left(-1\right)±\sqrt{45}}{2\left(-1\right)}
Add 1 to 44.
x=\frac{-\left(-1\right)±3\sqrt{5}}{2\left(-1\right)}
Take the square root of 45.
x=\frac{1±3\sqrt{5}}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±3\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{5}+1}{-2}
Now solve the equation x=\frac{1±3\sqrt{5}}{-2} when ± is plus. Add 1 to 3\sqrt{5}.
x=\frac{-3\sqrt{5}-1}{2}
Divide 1+3\sqrt{5} by -2.
x=\frac{1-3\sqrt{5}}{-2}
Now solve the equation x=\frac{1±3\sqrt{5}}{-2} when ± is minus. Subtract 3\sqrt{5} from 1.
x=\frac{3\sqrt{5}-1}{2}
Divide 1-3\sqrt{5} by -2.
x=\frac{-3\sqrt{5}-1}{2} x=\frac{3\sqrt{5}-1}{2}
The equation is now solved.
-x^{2}+8-x=-3
Subtract x from both sides.
-x^{2}-x=-3-8
Subtract 8 from both sides.
-x^{2}-x=-11
Subtract 8 from -3 to get -11.
\frac{-x^{2}-x}{-1}=-\frac{11}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{11}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=-\frac{11}{-1}
Divide -1 by -1.
x^{2}+x=11
Divide -11 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=11+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=11+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{45}{4}
Add 11 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{45}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{3\sqrt{5}}{2} x+\frac{1}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
x=\frac{3\sqrt{5}-1}{2} x=\frac{-3\sqrt{5}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}