Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+2x=\frac{7}{16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+2x-\frac{7}{16}=\frac{7}{16}-\frac{7}{16}
Subtract \frac{7}{16} from both sides of the equation.
-x^{2}+2x-\frac{7}{16}=0
Subtracting \frac{7}{16} from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-\frac{7}{16}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and -\frac{7}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-\frac{7}{16}\right)}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\left(-\frac{7}{16}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4-\frac{7}{4}}}{2\left(-1\right)}
Multiply 4 times -\frac{7}{16}.
x=\frac{-2±\sqrt{\frac{9}{4}}}{2\left(-1\right)}
Add 4 to -\frac{7}{4}.
x=\frac{-2±\frac{3}{2}}{2\left(-1\right)}
Take the square root of \frac{9}{4}.
x=\frac{-2±\frac{3}{2}}{-2}
Multiply 2 times -1.
x=-\frac{\frac{1}{2}}{-2}
Now solve the equation x=\frac{-2±\frac{3}{2}}{-2} when ± is plus. Add -2 to \frac{3}{2}.
x=\frac{1}{4}
Divide -\frac{1}{2} by -2.
x=-\frac{\frac{7}{2}}{-2}
Now solve the equation x=\frac{-2±\frac{3}{2}}{-2} when ± is minus. Subtract \frac{3}{2} from -2.
x=\frac{7}{4}
Divide -\frac{7}{2} by -2.
x=\frac{1}{4} x=\frac{7}{4}
The equation is now solved.
-x^{2}+2x=\frac{7}{16}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=\frac{\frac{7}{16}}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=\frac{\frac{7}{16}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=\frac{\frac{7}{16}}{-1}
Divide 2 by -1.
x^{2}-2x=-\frac{7}{16}
Divide \frac{7}{16} by -1.
x^{2}-2x+1=-\frac{7}{16}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{9}{16}
Add -\frac{7}{16} to 1.
\left(x-1\right)^{2}=\frac{9}{16}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-1=\frac{3}{4} x-1=-\frac{3}{4}
Simplify.
x=\frac{7}{4} x=\frac{1}{4}
Add 1 to both sides of the equation.