Solve for p
p=x\left(2x^{2}-x-4\right)
Graph
Share
Copied to clipboard
-x^{2}+2x^{3}-4x-p=0
Use the distributive property to multiply 2x^{2}-4 by x.
2x^{3}-4x-p=x^{2}
Add x^{2} to both sides. Anything plus zero gives itself.
-4x-p=x^{2}-2x^{3}
Subtract 2x^{3} from both sides.
-p=x^{2}-2x^{3}+4x
Add 4x to both sides.
-p=4x+x^{2}-2x^{3}
The equation is in standard form.
\frac{-p}{-1}=\frac{x\left(4+x-2x^{2}\right)}{-1}
Divide both sides by -1.
p=\frac{x\left(4+x-2x^{2}\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
p=-x\left(4+x-2x^{2}\right)
Divide x\left(x-2x^{2}+4\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}