Solve for u
u=-\frac{6}{n\left(5-n\right)}
n\neq 5\text{ and }n\neq 0
Solve for n (complex solution)
n=-\frac{\sqrt{u\left(25u+24\right)}-5u}{2u}
n=\frac{\sqrt{u\left(25u+24\right)}+5u}{2u}\text{, }u\neq 0
Solve for n
n=-\frac{\sqrt{u\left(25u+24\right)}-5u}{2u}
n=\frac{\sqrt{u\left(25u+24\right)}+5u}{2u}\text{, }u>0\text{ or }u\leq -\frac{24}{25}
Share
Copied to clipboard
\left(-u\right)n^{2}+5un=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
5nu-un^{2}=-6
Reorder the terms.
\left(5n-n^{2}\right)u=-6
Combine all terms containing u.
\frac{\left(5n-n^{2}\right)u}{5n-n^{2}}=-\frac{6}{5n-n^{2}}
Divide both sides by -n^{2}+5n.
u=-\frac{6}{5n-n^{2}}
Dividing by -n^{2}+5n undoes the multiplication by -n^{2}+5n.
u=-\frac{6}{n\left(5-n\right)}
Divide -6 by -n^{2}+5n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}