Skip to main content
Solve for k
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-2t^{2}+4t+t^{2}-t=2k\left(t-\frac{t^{2}-t}{2}\right)
Multiply both sides of the equation by 2.
-t^{2}+4t-t=2k\left(t-\frac{t^{2}-t}{2}\right)
Combine -2t^{2} and t^{2} to get -t^{2}.
-t^{2}+3t=2k\left(t-\frac{t^{2}-t}{2}\right)
Combine 4t and -t to get 3t.
-t^{2}+3t=2kt+2k\left(-\frac{t^{2}-t}{2}\right)
Use the distributive property to multiply 2k by t-\frac{t^{2}-t}{2}.
-t^{2}+3t=2kt+\frac{-2\left(t^{2}-t\right)}{2}k
Express 2\left(-\frac{t^{2}-t}{2}\right) as a single fraction.
-t^{2}+3t=2kt-\left(t^{2}-t\right)k
Cancel out 2 and 2.
-t^{2}+3t=2kt+\left(-t^{2}+t\right)k
Use the distributive property to multiply -1 by t^{2}-t.
-t^{2}+3t=2kt-t^{2}k+tk
Use the distributive property to multiply -t^{2}+t by k.
-t^{2}+3t=3kt-t^{2}k
Combine 2kt and tk to get 3kt.
3kt-t^{2}k=-t^{2}+3t
Swap sides so that all variable terms are on the left hand side.
\left(3t-t^{2}\right)k=-t^{2}+3t
Combine all terms containing k.
\left(3t-t^{2}\right)k=3t-t^{2}
The equation is in standard form.
\frac{\left(3t-t^{2}\right)k}{3t-t^{2}}=\frac{t\left(3-t\right)}{3t-t^{2}}
Divide both sides by 3t-t^{2}.
k=\frac{t\left(3-t\right)}{3t-t^{2}}
Dividing by 3t-t^{2} undoes the multiplication by 3t-t^{2}.
k=1
Divide t\left(3-t\right) by 3t-t^{2}.