Solve for k
\left\{\begin{matrix}\\k=1\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&t=3\text{ or }t=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=3\text{; }t=0\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&k=1\end{matrix}\right.
Share
Copied to clipboard
-2t^{2}+4t+t^{2}-t=2k\left(t-\frac{t^{2}-t}{2}\right)
Multiply both sides of the equation by 2.
-t^{2}+4t-t=2k\left(t-\frac{t^{2}-t}{2}\right)
Combine -2t^{2} and t^{2} to get -t^{2}.
-t^{2}+3t=2k\left(t-\frac{t^{2}-t}{2}\right)
Combine 4t and -t to get 3t.
-t^{2}+3t=2kt+2k\left(-\frac{t^{2}-t}{2}\right)
Use the distributive property to multiply 2k by t-\frac{t^{2}-t}{2}.
-t^{2}+3t=2kt+\frac{-2\left(t^{2}-t\right)}{2}k
Express 2\left(-\frac{t^{2}-t}{2}\right) as a single fraction.
-t^{2}+3t=2kt-\left(t^{2}-t\right)k
Cancel out 2 and 2.
-t^{2}+3t=2kt+\left(-t^{2}+t\right)k
Use the distributive property to multiply -1 by t^{2}-t.
-t^{2}+3t=2kt-t^{2}k+tk
Use the distributive property to multiply -t^{2}+t by k.
-t^{2}+3t=3kt-t^{2}k
Combine 2kt and tk to get 3kt.
3kt-t^{2}k=-t^{2}+3t
Swap sides so that all variable terms are on the left hand side.
\left(3t-t^{2}\right)k=-t^{2}+3t
Combine all terms containing k.
\left(3t-t^{2}\right)k=3t-t^{2}
The equation is in standard form.
\frac{\left(3t-t^{2}\right)k}{3t-t^{2}}=\frac{t\left(3-t\right)}{3t-t^{2}}
Divide both sides by 3t-t^{2}.
k=\frac{t\left(3-t\right)}{3t-t^{2}}
Dividing by 3t-t^{2} undoes the multiplication by 3t-t^{2}.
k=1
Divide t\left(3-t\right) by 3t-t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}