Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

t\left(-t+10\right)
Factor out t.
-t^{2}+10t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-10±\sqrt{10^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±10}{2\left(-1\right)}
Take the square root of 10^{2}.
t=\frac{-10±10}{-2}
Multiply 2 times -1.
t=\frac{0}{-2}
Now solve the equation t=\frac{-10±10}{-2} when ± is plus. Add -10 to 10.
t=0
Divide 0 by -2.
t=-\frac{20}{-2}
Now solve the equation t=\frac{-10±10}{-2} when ± is minus. Subtract 10 from -10.
t=10
Divide -20 by -2.
-t^{2}+10t=-t\left(t-10\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 10 for x_{2}.