Factor
p^{2}\left(p^{4}+1\right)\left(-p^{8}+p^{4}-1\right)
Evaluate
p^{2}\left(-p^{12}-1\right)
Share
Copied to clipboard
p^{2}\left(-1-p^{6}p^{6}\right)
Factor out p^{2}.
\left(p^{4}+1\right)\left(-p^{8}+p^{4}-1\right)
Consider -1-p^{12}. Find one factor of the form kp^{m}+n, where kp^{m} divides the monomial with the highest power -p^{12} and n divides the constant factor -1. One such factor is p^{4}+1. Factor the polynomial by dividing it by this factor.
p^{2}\left(p^{4}+1\right)\left(-p^{8}+p^{4}-1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -p^{8}+p^{4}-1,p^{4}+1.
-p^{2}-p^{14}
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}