Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

n\left(-n+24\right)
Factor out n.
-n^{2}+24n=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-24±\sqrt{24^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-24±24}{2\left(-1\right)}
Take the square root of 24^{2}.
n=\frac{-24±24}{-2}
Multiply 2 times -1.
n=\frac{0}{-2}
Now solve the equation n=\frac{-24±24}{-2} when ± is plus. Add -24 to 24.
n=0
Divide 0 by -2.
n=-\frac{48}{-2}
Now solve the equation n=\frac{-24±24}{-2} when ± is minus. Subtract 24 from -24.
n=24
Divide -48 by -2.
-n^{2}+24n=-n\left(n-24\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 24 for x_{2}.