Solve for m
m=\frac{-\sqrt{7}i-3}{2}\approx -1.5-1.322875656i
m=\frac{-3+\sqrt{7}i}{2}\approx -1.5+1.322875656i
Share
Copied to clipboard
-m^{2}-3m=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-m^{2}-3m-4=4-4
Subtract 4 from both sides of the equation.
-m^{2}-3m-4=0
Subtracting 4 from itself leaves 0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square -3.
m=\frac{-\left(-3\right)±\sqrt{9+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-\left(-3\right)±\sqrt{9-16}}{2\left(-1\right)}
Multiply 4 times -4.
m=\frac{-\left(-3\right)±\sqrt{-7}}{2\left(-1\right)}
Add 9 to -16.
m=\frac{-\left(-3\right)±\sqrt{7}i}{2\left(-1\right)}
Take the square root of -7.
m=\frac{3±\sqrt{7}i}{2\left(-1\right)}
The opposite of -3 is 3.
m=\frac{3±\sqrt{7}i}{-2}
Multiply 2 times -1.
m=\frac{3+\sqrt{7}i}{-2}
Now solve the equation m=\frac{3±\sqrt{7}i}{-2} when ± is plus. Add 3 to i\sqrt{7}.
m=\frac{-\sqrt{7}i-3}{2}
Divide 3+i\sqrt{7} by -2.
m=\frac{-\sqrt{7}i+3}{-2}
Now solve the equation m=\frac{3±\sqrt{7}i}{-2} when ± is minus. Subtract i\sqrt{7} from 3.
m=\frac{-3+\sqrt{7}i}{2}
Divide 3-i\sqrt{7} by -2.
m=\frac{-\sqrt{7}i-3}{2} m=\frac{-3+\sqrt{7}i}{2}
The equation is now solved.
-m^{2}-3m=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-m^{2}-3m}{-1}=\frac{4}{-1}
Divide both sides by -1.
m^{2}+\left(-\frac{3}{-1}\right)m=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}+3m=\frac{4}{-1}
Divide -3 by -1.
m^{2}+3m=-4
Divide 4 by -1.
m^{2}+3m+\left(\frac{3}{2}\right)^{2}=-4+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+3m+\frac{9}{4}=-4+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}+3m+\frac{9}{4}=-\frac{7}{4}
Add -4 to \frac{9}{4}.
\left(m+\frac{3}{2}\right)^{2}=-\frac{7}{4}
Factor m^{2}+3m+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
m+\frac{3}{2}=\frac{\sqrt{7}i}{2} m+\frac{3}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
m=\frac{-3+\sqrt{7}i}{2} m=\frac{-\sqrt{7}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}