Solve for m
m=2
m=3
Share
Copied to clipboard
-m^{2}+2m+3=9-3m
Use the distributive property to multiply 3 by 3-m.
-m^{2}+2m+3-9=-3m
Subtract 9 from both sides.
-m^{2}+2m-6=-3m
Subtract 9 from 3 to get -6.
-m^{2}+2m-6+3m=0
Add 3m to both sides.
-m^{2}+5m-6=0
Combine 2m and 3m to get 5m.
a+b=5 ab=-\left(-6\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -m^{2}+am+bm-6. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=3 b=2
The solution is the pair that gives sum 5.
\left(-m^{2}+3m\right)+\left(2m-6\right)
Rewrite -m^{2}+5m-6 as \left(-m^{2}+3m\right)+\left(2m-6\right).
-m\left(m-3\right)+2\left(m-3\right)
Factor out -m in the first and 2 in the second group.
\left(m-3\right)\left(-m+2\right)
Factor out common term m-3 by using distributive property.
m=3 m=2
To find equation solutions, solve m-3=0 and -m+2=0.
-m^{2}+2m+3=9-3m
Use the distributive property to multiply 3 by 3-m.
-m^{2}+2m+3-9=-3m
Subtract 9 from both sides.
-m^{2}+2m-6=-3m
Subtract 9 from 3 to get -6.
-m^{2}+2m-6+3m=0
Add 3m to both sides.
-m^{2}+5m-6=0
Combine 2m and 3m to get 5m.
m=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square 5.
m=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
Multiply 4 times -6.
m=\frac{-5±\sqrt{1}}{2\left(-1\right)}
Add 25 to -24.
m=\frac{-5±1}{2\left(-1\right)}
Take the square root of 1.
m=\frac{-5±1}{-2}
Multiply 2 times -1.
m=-\frac{4}{-2}
Now solve the equation m=\frac{-5±1}{-2} when ± is plus. Add -5 to 1.
m=2
Divide -4 by -2.
m=-\frac{6}{-2}
Now solve the equation m=\frac{-5±1}{-2} when ± is minus. Subtract 1 from -5.
m=3
Divide -6 by -2.
m=2 m=3
The equation is now solved.
-m^{2}+2m+3=9-3m
Use the distributive property to multiply 3 by 3-m.
-m^{2}+2m+3+3m=9
Add 3m to both sides.
-m^{2}+5m+3=9
Combine 2m and 3m to get 5m.
-m^{2}+5m=9-3
Subtract 3 from both sides.
-m^{2}+5m=6
Subtract 3 from 9 to get 6.
\frac{-m^{2}+5m}{-1}=\frac{6}{-1}
Divide both sides by -1.
m^{2}+\frac{5}{-1}m=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-5m=\frac{6}{-1}
Divide 5 by -1.
m^{2}-5m=-6
Divide 6 by -1.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-5m+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-5m+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor m^{2}-5m+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
m-\frac{5}{2}=\frac{1}{2} m-\frac{5}{2}=-\frac{1}{2}
Simplify.
m=3 m=2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}