Solve for F
\left\{\begin{matrix}F=\frac{F_{q}l_{1}}{h+l_{2}}\text{, }&h\neq -l_{2}\\F\in \mathrm{R}\text{, }&\left(F_{q}=0\text{ or }l_{1}=0\right)\text{ and }h=-l_{2}\end{matrix}\right.
Solve for F_q
\left\{\begin{matrix}F_{q}=\frac{F\left(h+l_{2}\right)}{l_{1}}\text{, }&l_{1}\neq 0\\F_{q}\in \mathrm{R}\text{, }&\left(h=-l_{2}\text{ or }F=0\right)\text{ and }l_{1}=0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
- l _ { 1 } \cdot F _ { q } + ( h + l _ { 2 } ) \cdot F = 0
Share
Copied to clipboard
\left(-l_{1}\right)F_{q}+hF+l_{2}F=0
Use the distributive property to multiply h+l_{2} by F.
hF+l_{2}F=-\left(-l_{1}\right)F_{q}
Subtract \left(-l_{1}\right)F_{q} from both sides. Anything subtracted from zero gives its negation.
hF+l_{2}F=l_{1}F_{q}
Multiply -1 and -1 to get 1.
\left(h+l_{2}\right)F=l_{1}F_{q}
Combine all terms containing F.
\left(h+l_{2}\right)F=F_{q}l_{1}
The equation is in standard form.
\frac{\left(h+l_{2}\right)F}{h+l_{2}}=\frac{F_{q}l_{1}}{h+l_{2}}
Divide both sides by h+l_{2}.
F=\frac{F_{q}l_{1}}{h+l_{2}}
Dividing by h+l_{2} undoes the multiplication by h+l_{2}.
\left(-l_{1}\right)F_{q}+hF+l_{2}F=0
Use the distributive property to multiply h+l_{2} by F.
\left(-l_{1}\right)F_{q}+l_{2}F=-hF
Subtract hF from both sides. Anything subtracted from zero gives its negation.
\left(-l_{1}\right)F_{q}=-hF-l_{2}F
Subtract l_{2}F from both sides.
-F_{q}l_{1}=-Fh-Fl_{2}
Reorder the terms.
\left(-l_{1}\right)F_{q}=-Fh-Fl_{2}
The equation is in standard form.
\frac{\left(-l_{1}\right)F_{q}}{-l_{1}}=-\frac{F\left(h+l_{2}\right)}{-l_{1}}
Divide both sides by -l_{1}.
F_{q}=-\frac{F\left(h+l_{2}\right)}{-l_{1}}
Dividing by -l_{1} undoes the multiplication by -l_{1}.
F_{q}=\frac{F\left(h+l_{2}\right)}{l_{1}}
Divide -F\left(h+l_{2}\right) by -l_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}