Solve for m
\left\{\begin{matrix}m=-\frac{i\left(15ix+n+100\right)}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&n=-100\text{ and }x=0\end{matrix}\right.
Solve for n
n=imx-15ix-100
Share
Copied to clipboard
\left(-15i+im\right)x-n=100
Use the distributive property to multiply -i by 15-m.
-15ix+imx-n=100
Use the distributive property to multiply -15i+im by x.
imx-n=100-\left(-15ix\right)
Subtract -15ix from both sides.
imx=100-\left(-15ix\right)+n
Add n to both sides.
imx=100+15ix+n
Multiply -1 and -15i to get 15i.
ixm=15ix+n+100
The equation is in standard form.
\frac{ixm}{ix}=\frac{15ix+n+100}{ix}
Divide both sides by ix.
m=\frac{15ix+n+100}{ix}
Dividing by ix undoes the multiplication by ix.
m=-\frac{i\left(15ix+n+100\right)}{x}
Divide 100+15ix+n by ix.
\left(-15i+im\right)x-n=100
Use the distributive property to multiply -i by 15-m.
-15ix+imx-n=100
Use the distributive property to multiply -15i+im by x.
imx-n=100-\left(-15ix\right)
Subtract -15ix from both sides.
-n=100-\left(-15ix\right)-imx
Subtract imx from both sides.
-n=100+15ix-imx
Multiply -1 and -15i to get 15i.
\frac{-n}{-1}=\frac{100+15ix-imx}{-1}
Divide both sides by -1.
n=\frac{100+15ix-imx}{-1}
Dividing by -1 undoes the multiplication by -1.
n=imx-15ix-100
Divide 100+15ix-imx by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}