Solve for h
h=-\frac{\left(2n+3\right)^{2}}{n+1}
n\neq -1
Solve for n
n=\frac{-\sqrt{h\left(h+8\right)}-h-12}{8}
n=\frac{\sqrt{h\left(h+8\right)}-h-12}{8}\text{, }h\leq -8\text{ or }h\geq 0
Share
Copied to clipboard
\left(-h\right)n-h-2\left(n+1\right)^{2}-2\left(n+2\right)^{2}=-1
Use the distributive property to multiply -h by n+1.
\left(-h\right)n-h-2\left(n^{2}+2n+1\right)-2\left(n+2\right)^{2}=-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+1\right)^{2}.
\left(-h\right)n-h-2n^{2}-4n-2-2\left(n+2\right)^{2}=-1
Use the distributive property to multiply -2 by n^{2}+2n+1.
\left(-h\right)n-h-2n^{2}-4n-2-2\left(n^{2}+4n+4\right)=-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+2\right)^{2}.
\left(-h\right)n-h-2n^{2}-4n-2-2n^{2}-8n-8=-1
Use the distributive property to multiply -2 by n^{2}+4n+4.
\left(-h\right)n-h-4n^{2}-4n-2-8n-8=-1
Combine -2n^{2} and -2n^{2} to get -4n^{2}.
\left(-h\right)n-h-4n^{2}-12n-2-8=-1
Combine -4n and -8n to get -12n.
\left(-h\right)n-h-4n^{2}-12n-10=-1
Subtract 8 from -2 to get -10.
\left(-h\right)n-h-12n-10=-1+4n^{2}
Add 4n^{2} to both sides.
\left(-h\right)n-h-10=-1+4n^{2}+12n
Add 12n to both sides.
\left(-h\right)n-h=-1+4n^{2}+12n+10
Add 10 to both sides.
\left(-h\right)n-h=9+4n^{2}+12n
Add -1 and 10 to get 9.
-hn-h=4n^{2}+12n+9
Reorder the terms.
\left(-n-1\right)h=4n^{2}+12n+9
Combine all terms containing h.
\frac{\left(-n-1\right)h}{-n-1}=\frac{\left(2n+3\right)^{2}}{-n-1}
Divide both sides by -n-1.
h=\frac{\left(2n+3\right)^{2}}{-n-1}
Dividing by -n-1 undoes the multiplication by -n-1.
h=-\frac{\left(2n+3\right)^{2}}{n+1}
Divide \left(2n+3\right)^{2} by -n-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}