Skip to main content
Solve for h
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(-h\right)n-h-2\left(n+1\right)^{2}-2\left(n+2\right)^{2}=-1
Use the distributive property to multiply -h by n+1.
\left(-h\right)n-h-2\left(n^{2}+2n+1\right)-2\left(n+2\right)^{2}=-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+1\right)^{2}.
\left(-h\right)n-h-2n^{2}-4n-2-2\left(n+2\right)^{2}=-1
Use the distributive property to multiply -2 by n^{2}+2n+1.
\left(-h\right)n-h-2n^{2}-4n-2-2\left(n^{2}+4n+4\right)=-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+2\right)^{2}.
\left(-h\right)n-h-2n^{2}-4n-2-2n^{2}-8n-8=-1
Use the distributive property to multiply -2 by n^{2}+4n+4.
\left(-h\right)n-h-4n^{2}-4n-2-8n-8=-1
Combine -2n^{2} and -2n^{2} to get -4n^{2}.
\left(-h\right)n-h-4n^{2}-12n-2-8=-1
Combine -4n and -8n to get -12n.
\left(-h\right)n-h-4n^{2}-12n-10=-1
Subtract 8 from -2 to get -10.
\left(-h\right)n-h-12n-10=-1+4n^{2}
Add 4n^{2} to both sides.
\left(-h\right)n-h-10=-1+4n^{2}+12n
Add 12n to both sides.
\left(-h\right)n-h=-1+4n^{2}+12n+10
Add 10 to both sides.
\left(-h\right)n-h=9+4n^{2}+12n
Add -1 and 10 to get 9.
-hn-h=4n^{2}+12n+9
Reorder the terms.
\left(-n-1\right)h=4n^{2}+12n+9
Combine all terms containing h.
\frac{\left(-n-1\right)h}{-n-1}=\frac{\left(2n+3\right)^{2}}{-n-1}
Divide both sides by -n-1.
h=\frac{\left(2n+3\right)^{2}}{-n-1}
Dividing by -n-1 undoes the multiplication by -n-1.
h=-\frac{\left(2n+3\right)^{2}}{n+1}
Divide \left(2n+3\right)^{2} by -n-1.