Factor
-d\left(d-6\right)\left(d+5\right)
Evaluate
-d\left(d-6\right)\left(d+5\right)
Share
Copied to clipboard
d\left(-d^{2}+d+30\right)
Factor out d.
a+b=1 ab=-30=-30
Consider -d^{2}+d+30. Factor the expression by grouping. First, the expression needs to be rewritten as -d^{2}+ad+bd+30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=6 b=-5
The solution is the pair that gives sum 1.
\left(-d^{2}+6d\right)+\left(-5d+30\right)
Rewrite -d^{2}+d+30 as \left(-d^{2}+6d\right)+\left(-5d+30\right).
-d\left(d-6\right)-5\left(d-6\right)
Factor out -d in the first and -5 in the second group.
\left(d-6\right)\left(-d-5\right)
Factor out common term d-6 by using distributive property.
d\left(d-6\right)\left(-d-5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}