Solve for a
a=bz+z+b
Solve for b
\left\{\begin{matrix}b=\frac{a-z}{z+1}\text{, }&z\neq -1\\b\in \mathrm{R}\text{, }&z=-1\text{ and }a=-1\end{matrix}\right.
Share
Copied to clipboard
b-a=\left(-b\right)z-z
Swap sides so that all variable terms are on the left hand side.
-a=\left(-b\right)z-z-b
Subtract b from both sides.
-a=-bz-z-b
Reorder the terms.
\frac{-a}{-1}=\frac{-bz-z-b}{-1}
Divide both sides by -1.
a=\frac{-bz-z-b}{-1}
Dividing by -1 undoes the multiplication by -1.
a=bz+z+b
Divide -bz-z-b by -1.
\left(-b\right)z-z-b=-a
Subtract b from both sides.
\left(-b\right)z-b=-a+z
Add z to both sides.
-bz-b=z-a
Reorder the terms.
\left(-z-1\right)b=z-a
Combine all terms containing b.
\frac{\left(-z-1\right)b}{-z-1}=\frac{z-a}{-z-1}
Divide both sides by -z-1.
b=\frac{z-a}{-z-1}
Dividing by -z-1 undoes the multiplication by -z-1.
b=-\frac{z-a}{z+1}
Divide z-a by -z-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}