Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(-a^{2015}\right)^{1}\times \left(\frac{1}{a}\right)^{2016}
Use the rules of exponents to simplify the expression.
-\left(a^{2015}\right)^{1}\times 1^{2016}\times \left(\frac{1}{a}\right)^{2016}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
-1^{2016}\left(a^{2015}\right)^{1}\times \left(\frac{1}{a}\right)^{2016}
Use the Commutative Property of Multiplication.
-1^{2016}a^{2015}a^{-2016}
To raise a power to another power, multiply the exponents.
-1^{2016}a^{2015-2016}
To multiply powers of the same base, add their exponents.
-1^{2016}\times \frac{1}{a}
Add the exponents 2015 and -2016.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-a^{2015}\right)\times \frac{1^{2016}}{a^{2016}})
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{2015}\times 1^{2016}}{a^{2016}})
Express \left(-a^{2015}\right)\times \frac{1^{2016}}{a^{2016}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-1^{2016}}{a})
Cancel out a^{2015} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-1}{a})
Calculate 1 to the power of 2016 and get 1.
-\left(-1\right)a^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{-1-1}
Multiply -1 times -1.
a^{-2}
Subtract 1 from -1.