Solve for D
D=5E+F+26
Solve for E
E=\frac{D-F-26}{5}
Share
Copied to clipboard
-D+F+26=-5E
Subtract 5E from both sides. Anything subtracted from zero gives its negation.
-D+26=-5E-F
Subtract F from both sides.
-D=-5E-F-26
Subtract 26 from both sides.
\frac{-D}{-1}=\frac{-5E-F-26}{-1}
Divide both sides by -1.
D=\frac{-5E-F-26}{-1}
Dividing by -1 undoes the multiplication by -1.
D=5E+F+26
Divide -5E-F-26 by -1.
5E+F+26=D
Add D to both sides. Anything plus zero gives itself.
5E+26=D-F
Subtract F from both sides.
5E=D-F-26
Subtract 26 from both sides.
\frac{5E}{5}=\frac{D-F-26}{5}
Divide both sides by 5.
E=\frac{D-F-26}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}